Gemma是什么
Gemma是由谷歌DeepMind和谷歌的其他团队开发的一系列轻量级、先进的开放AI模型,基于与Gemini模型相同的技术,旨在帮助开发者和研究人员构建负责任的AI应用。Gemma模型系列包括两种权重规模的模型:Gemma 2B 和 Gemma 7B,提供预训练和指令微调版本,支持多种框架,如JAX、PyTorch和TensorFlow,以在不同设备上高效运行。6月28日,第二代模型Gemma 2已发布。

Gemma的官方入口
Gemma的官网主页:https://ai.google.dev/gemma?hl=zh-cnGemma的Hugging Face模型:https://huggingface.co/models?search=google/gemmaGemma的Kaggle模型地址:https://www.kaggle.com/models/google/gemma/code/Gemma的技术报告:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf官方PyTorch实现GitHub代码库:https://github.com/google/gemma_pytorchGemma的Google Colab运行地址:https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/lora_tuning.ipynbGemma的主要特性
轻量级架构:Gemma模型设计为轻量级,便于在多种计算环境中运行,包括个人电脑和工作站。开放模型:Gemma模型的权重是开放的,允许用户在遵守许可协议的情况下进行商业使用和分发。预训练与指令微调:提供预训练模型和经过指令微调的版本,后者通过人类反馈强化学习(RLHF)来确保模型行为的负责任性。多框架支持:Gemma支持JAX、PyTorch和TensorFlow等主要AI框架,通过Keras 3.0提供工具链,简化了推理和监督微调(SFT)过程。安全性与可靠性:在设计时,Gemma遵循Google的AI原则,使用自动化技术过滤训练数据中的敏感信息,并进行了一系列安全评估,包括红队测试和对抗性测试。性能优化:Gemma模型针对NVIDIA GPU和Google Cloud TPUs等硬件平台进行了优化,确保在不同设备上都能实现高性能。社区支持:Google提供了Kaggle、Colab等平台的免费资源,以及Google Cloud的积分,鼓励开发者和研究人员利用Gemma进行创新和研究。跨平台兼容性:Gemma模型可以在多种设备上运行,包括笔记本电脑、台式机、物联网设备和云端,支持广泛的AI功能。负责任的AI工具包:Google还发布了Responsible Generative AI Toolkit,帮助开发者构建安全和负责任的AI应用,包括安全分类器、调试工具和应用指南。