文章来源:智汇AI 发布时间:2025-08-05
Unique3D是由清华大学团队开源的一个单张图像到3D模型转换的框架,通过结合多视图扩散模型和法线扩散模型,以及一种高效的多级上采样策略,能够从单张图片中快速
暂无访问Unique3D是清华大学团队开源的一个单张图像到3D模型转换的框架,通过结合多视图扩散模型和法线扩散模型,以及一种高效的多级上采样策略,能够从单张图片中快速生成具有高保真度和丰富纹理的3D网格。Unique3D结合ISOMER算法进一步确保了生成的3D模型在几何和色彩上的一致性和准确性,仅需30秒即可完成从单视图图像到3D模型的转换,生成效果优于InstantMesh、CRM、OpenLRM等图像转3D模型。


多视图扩散模型:利用扩散模型从单视图图像生成多视角(通常是四个正交视图)图像。这些模型通过训练学习2D图像的分布,并将其扩展到3D空间,生成具有不同视角的图像。法线扩散模型:与多视图扩散模型协同工作,为每个生成的视图图像生成对应的法线贴图,这些法线贴图包含了表面法线的方向信息,对后续的3D重建至关重要。多级上采样过程:采用多级上采样策略逐步提高生成图像的分辨率。初始生成的图像分辨率较低,通过上采样技术逐步提升至更高的分辨率,以获得更清晰的细节。ISOMER网格重建算法:一种高效的网格重建算法,用于从高分辨率的多视图RGB图像和法线图中重建3D网格。ISOMER算法包括:初始网格估计:快速生成3D对象的粗糙拓扑结构和初始网格。粗糙到精细的网格优化:通过迭代优化过程,逐步改善网格的形状,使其更接近目标形状。显式目标优化:为每个顶点指定一个优化目标,解决由于视角不一致导致的问题,提高几何细节的准确性。颜色和几何先验整合:在网格重建过程中,将颜色信息和几何形状的信息整合到网格结果中,以提高最终模型的视觉真实性和准确性。显式目标(ExplicitTarget):为每个顶点定义一个优化目标,这是一个从顶点集合到颜色集合的映射函数,用于指导顶点颜色的优化,提高模型的多视图一致性。扩展正则化(Expansion Regularization):在优化过程中使用的一种技术,通过在顶点的法线方向上移动顶点来避免表面塌陷,确保模型的完整性。颜色补全算法:针对不可见区域的颜色补全,使用一种高效的算法,将可见区域的颜色平滑地传播到不可见区域,确保整个模型颜色的一致性。