文章来源:智汇AI 发布时间:2025-08-06
DesignEdit是由微软亚洲研究院和北京大学的研究团队共同开发的一个AI图像编辑框架,引入了设计领域的图层概念,采用多层潜在分解和融合的技术,实现了无需额外
暂无访问DesignEdit是由来自微软亚洲研究院和北京大学的研究人员共同开发的一个AI图像编辑框架,引入了设计领域的图层概念,采用多层潜在分解和融合的技术,实现了无需额外训练即可进行精确的空间感知图像编辑和处理。通过关键掩码自注意力机制和伪影抑制方案,DesignEdit能够灵活处理图像中的各个对象,并执行诸如移动、调整大小、移除等复杂操作。

DesignEdit的工作原理基于两个核心子任务的结合:多层潜在分解(Multi-Layered Latent Decomposition)和多层潜在融合(Multi-Layered Latent Fusion)。
多层潜在分解:概念:DesignEdit将源图像的潜在表示(latent representation)分割成多个层次,每个层次代表图像中的不同对象或背景部分。关键掩码自注意力:为了在不破坏图像其他区域的情况下编辑特定区域,DesignEdit采用了一种特殊的自注意力机制,称为关键掩码(key-masking)自注意力。这种机制允许模型在处理图像时忽略或修改掩码区域内的像素,同时保留周围区域的上下文信息。背景修复:在移除对象后,DesignEdit利用自注意力机制中的内在修复能力来填补背景中的空白区域,确保图像的连贯性和自然过渡。多层潜在融合:指令引导的融合:在分解步骤之后,DesignEdit根据用户的编辑指令,将编辑后的多个潜在表示层融合到一个新的画布上。这个过程是按照特定的图层顺序和用户指定的布局安排进行的。伪影抑制:为了提高编辑质量,DesignEdit在潜在空间中引入了伪影抑制方案。这个方案有助于减少编辑过程中可能出现的视觉瑕疵,使图像看起来更加自然和真实。和谐化处理:在融合过程中,DesignEdit通过额外的去噪步骤来协调融合后的多层潜在表示,进一步优化图像边缘的整合和界面的平滑过渡。整个编辑过程是免训练的,意味着不需要针对特定任务进行额外的训练或微调。DesignEdit利用先进的深度学习模型,如GPT-4V,来辅助生成精确的编辑指令和布局安排,从而实现高效、准确的图像编辑。