文章来源:智汇AI 发布时间:2025-08-07
Depth Anything是由来自Tiktok、香港大学和浙江大学的研究人员推出的一个为单目深度估计设计的深度学习模型,旨在处理各种情况下的图像并估计其深度信
暂无访问Depth Anything是由来自Tiktok、香港大学和浙江大学的研究人员推出的一个为单目深度估计(Monocular Depth Estimation, MDE)设计的深度学习模型,旨在处理各种情况下的图像并估计其深度信息。该模型的核心特点是利用大规模的未标注数据来增强模型的泛化能力,使其能够在没有人工标注深度信息的情况下,对各种场景的图像进行准确的深度预测。
Depth Anything的工作原理基于深度学习和大规模数据集的结合,特别是利用未标注数据来增强模型的泛化能力。
以下是其工作原理的关键步骤:
数据收集与预处理:首先,研究者们设计了一个数据引擎,用于从多个公共大型数据集中收集原始未标注的图像,这些图像覆盖了广泛的多样性,如不同的场景、光照条件和天气状况。然后,使用预训练的单目深度估计(MDE)模型对这些未标注图像进行深度预测,生成伪标签(pseudo labels),这些伪标签将用于后续的训练过程。模型训练:在第一阶段,使用从公共数据集中收集的标注图像训练一个教师模型(teacher model),这个模型将作为后续学生模型(student model)的基础。在第二阶段,学生模型在教师模型的帮助下,结合标注图像和伪标签图像进行联合训练。这一过程称为自训练(self-training)。数据增强与挑战:为了提高模型的鲁棒性,研究者们在未标注图像上应用了强扰动,如颜色失真和空间剪切(CutMix),迫使模型在训练过程中学习到更鲁棒的表示。语义辅助:为了增强模型的场景理解能力,研究者们采用了辅助特征对齐损失(feature alignment loss),使得学生模型在特征空间中与预训练的语义分割模型(如DINOv2)保持一致。这有助于模型在深度估计任务中更好地理解场景内容。模型微调和评估:在训练完成后,Depth Anything模型可以通过微调来适应特定的深度估计任务,如使用NYUv2和KITTI数据集的度量深度信息进行微调,以进一步提高其在特定任务上的性能。