文章来源:智汇AI 发布时间:2025-08-07
Follow Your Pose是由清华大学、香港科技大学、腾讯AI Lab以及中科院的研究人员开源的一个基于文本到视频生成的框架,允许用户通过文本描述和指定的
暂无访问Follow Your Pose是由清华大学、香港科技大学、腾讯AI Lab以及中科院的研究人员开源的一个基于文本到视频生成的框架,允许用户通过文本描述和指定的人物姿态来生成视频。该框架采用了两阶段的训练策略,能够生成与文本描述和姿态序列高度一致的视频,同时保持视频中人物动作的真实性和连贯性。
Follow Your Pose的工作原理主要基于一个两阶段的训练过程,旨在结合文本描述和姿态信息来生成视频。以下是其工作原理的详细步骤:
第一阶段:姿态控制的文本到图像生成姿态编码器:首先,框架使用一个零初始化的卷积编码器来学习姿态信息。这个编码器从输入的姿态序列中提取关键点特征。特征注入:提取的姿态特征被下采样到不同的分辨率,并以残差连接的方式注入到预训练的文本到图像(T2I)模型的U-Net结构中。这样做可以在保持原有模型的图像生成能力的同时,引入姿态控制。训练:在这个阶段,模型仅使用姿态图像对进行训练,目的是学习如何根据文本描述和姿态信息生成图像。第二阶段:视频生成视频数据集:为了学习时间上的连贯性,框架在第二阶段使用了一个没有姿态标注的视频数据集(如HDVLIA)进行训练。3D网络结构:将预训练的U-Net模型扩展为3D网络,以便处理视频输入。这涉及到将第一层卷积扩展为伪3D卷积,并添加时间自注意力模块来模拟时间序列。跨帧自注意力:为了进一步提高视频的连贯性,框架引入了跨帧自注意力(cross-frame self-attention)模块,这有助于在视频帧之间保持内容的一致性。微调:在这个阶段,只有与时间连贯性相关的参数(如时间自注意力和跨帧自注意力)会被更新,而其他参数(如伪3D卷积层和前馈网络FFN)保持不变。生成过程文本和姿态输入:在推理阶段,用户输入描述目标角色外观和动作的文本,以及一个表示动作序列的姿态序列。视频生成:模型根据这些输入生成视频。在生成过程中,大多数预训练的稳定扩散模型参数被冻结,只有与时间连贯性相关的模块参与计算。通过这种两阶段的训练策略,Follow Your Pose能够有效地从易于获取的数据集中学习,生成具有高度控制性和时间连贯性的视频。